67 research outputs found

    Fault-tolerant additive weighted geometric spanners

    Full text link
    Let S be a set of n points and let w be a function that assigns non-negative weights to points in S. The additive weighted distance d_w(p, q) between two points p,q belonging to S is defined as w(p) + d(p, q) + w(q) if p \ne q and it is zero if p = q. Here, d(p, q) denotes the (geodesic) Euclidean distance between p and q. A graph G(S, E) is called a t-spanner for the additive weighted set S of points if for any two points p and q in S the distance between p and q in graph G is at most t.d_w(p, q) for a real number t > 1. Here, d_w(p,q) is the additive weighted distance between p and q. For some integer k \geq 1, a t-spanner G for the set S is a (k, t)-vertex fault-tolerant additive weighted spanner, denoted with (k, t)-VFTAWS, if for any set S' \subset S with cardinality at most k, the graph G \ S' is a t-spanner for the points in S \ S'. For any given real number \epsilon > 0, we obtain the following results: - When the points in S belong to Euclidean space R^d, an algorithm to compute a (k,(2 + \epsilon))-VFTAWS with O(kn) edges for the metric space (S, d_w). Here, for any two points p, q \in S, d(p, q) is the Euclidean distance between p and q in R^d. - When the points in S belong to a simple polygon P, for the metric space (S, d_w), one algorithm to compute a geodesic (k, (2 + \epsilon))-VFTAWS with O(\frac{k n}{\epsilon^{2}}\lg{n}) edges and another algorithm to compute a geodesic (k, (\sqrt{10} + \epsilon))-VFTAWS with O(kn(\lg{n})^2) edges. Here, for any two points p, q \in S, d(p, q) is the geodesic Euclidean distance along the shortest path between p and q in P. - When the points in SS lie on a terrain T, an algorithm to compute a geodesic (k, (2 + \epsilon))-VFTAWS with O(\frac{k n}{\epsilon^{2}}\lg{n}) edges.Comment: a few update

    Minimum-weight triangulation is NP-hard

    Full text link
    A triangulation of a planar point set S is a maximal plane straight-line graph with vertex set S. In the minimum-weight triangulation (MWT) problem, we are looking for a triangulation of a given point set that minimizes the sum of the edge lengths. We prove that the decision version of this problem is NP-hard. We use a reduction from PLANAR-1-IN-3-SAT. The correct working of the gadgets is established with computer assistance, using dynamic programming on polygonal faces, as well as the beta-skeleton heuristic to certify that certain edges belong to the minimum-weight triangulation.Comment: 45 pages (including a technical appendix of 13 pages), 28 figures. This revision contains a few improvements in the expositio

    Balancing Minimum Spanning and Shortest Path Trees

    Full text link
    This paper give a simple linear-time algorithm that, given a weighted digraph, finds a spanning tree that simultaneously approximates a shortest-path tree and a minimum spanning tree. The algorithm provides a continuous trade-off: given the two trees and epsilon > 0, the algorithm returns a spanning tree in which the distance between any vertex and the root of the shortest-path tree is at most 1+epsilon times the shortest-path distance, and yet the total weight of the tree is at most 1+2/epsilon times the weight of a minimum spanning tree. This is the best tradeoff possible. The paper also describes a fast parallel implementation.Comment: conference version: ACM-SIAM Symposium on Discrete Algorithms (1993

    Lower bounds on the dilation of plane spanners

    Full text link
    (I) We exhibit a set of 23 points in the plane that has dilation at least 1.43081.4308, improving the previously best lower bound of 1.41611.4161 for the worst-case dilation of plane spanners. (II) For every integer n≥13n\geq13, there exists an nn-element point set SS such that the degree 3 dilation of SS denoted by δ0(S,3) equals 1+3=2.7321…\delta_0(S,3) \text{ equals } 1+\sqrt{3}=2.7321\ldots in the domain of plane geometric spanners. In the same domain, we show that for every integer n≥6n\geq6, there exists a an nn-element point set SS such that the degree 4 dilation of SS denoted by δ0(S,4) equals 1+(5−5)/2=2.1755…\delta_0(S,4) \text{ equals } 1 + \sqrt{(5-\sqrt{5})/2}=2.1755\ldots The previous best lower bound of 1.41611.4161 holds for any degree. (III) For every integer n≥6n\geq6 , there exists an nn-element point set SS such that the stretch factor of the greedy triangulation of SS is at least 2.02682.0268.Comment: Revised definitions in the introduction; 23 pages, 15 figures; 2 table

    The Emergence of Sparse Spanners and Greedy Well-Separated Pair Decomposition

    Get PDF
    A spanner graph on a set of points in RdR^d contains a shortest path between any pair of points with length at most a constant factor of their Euclidean distance. In this paper we investigate new models and aim to interpret why good spanners 'emerge' in reality, when they are clearly built in pieces by agents with their own interests and the construction is not coordinated. Our main result is to show that if edges are built in an arbitrary order but an edge is built if and only if its endpoints are not 'close' to the endpoints of an existing edge, the graph is a (1 + \eps)-spanner with a linear number of edges, constant average degree, and the total edge length as a small logarithmic factor of the cost of the minimum spanning tree. As a side product, we show a simple greedy algorithm for constructing optimal size well-separated pair decompositions that may be of interest on its own

    On plexus representation of dissimilarities

    Get PDF
    Correspondence analysis has found widespread application in analysing vegetation gradients. However, it is not clear how it is robust to situations where structures other than a simple gradient exist. The introduction of instrumental variables in canonical correspondence analysis does not avoid these difficulties. In this paper I propose to examine some simple methods based on the notion of the plexus (sensu McIntosh) where graphs or networks are used to display some of the structure of the data so that an informed choice of models is possible. I showthat two different classes of plexus model are available. These classes are distinguished by the use in one case of a global Euclidean model to obtain well-separated pair decomposition (WSPD) of a set of points which implicitly involves all dissimilarities, while in the other a Riemannian view is taken and emphasis is placed locally, i.e., on small dissimilarities. I showan example of each of these classes applied to vegetation data

    Sorting Shuffled Monotone Sequences

    No full text

    Space-efficient parallel merging

    No full text
    • …
    corecore